PyTorch入门

本文共946个字,预计阅读时间需要3分钟。

PyTorch入门

PyTorch 是一个建立在 Torch 库之上的 Python 包,旨在加速深度学习应用。PyTorch 提供一种类似 NumPy 的抽象方法来表征张量(或多维数组),它可以利用 GPU 来加速训练。

PyTorch 既可以看做加入了GPU 支持的numpy,同时也可以看成一个拥有自动求导功能的强大的深度神经网络,除了Facebook 之外,它还已经被Twitter、CMU 和Salesforce 等机构采用。

基本知识

标量、向量、张量的区别,下图已经很明确了。

PyTorch 的关键数据结构是张量,即多维数组。其功能与 NumPy 的 ndarray 对象类似,如下我们可以使用 torch.Tensor() 创建张量。

如果你需要一个兼容 NumPy 的表征,或者你想从现有的 NumPy 对象中创建一个 PyTorch 张量。

PyTorch与TensorFlow

就目前而言,由于各种原因,TensorFlow 显然比 PyTorch 更受青睐。

TensorFlow 很大,经验丰富,最适合实际应用。 是大多数机器学习和深度学习专家明显的选择,因为它提供了大量的功能,最重要的是它在市场上的成熟应用。 它具有更好的社区支持以及多语言 API 可用。 它有一个很好的文档库,由于从准备到使用的代码使之易于生产。 因此,它更适合想要开始深度学习的人,或者希望开发深度学习模型的组织。

虽然 PyTorch 相对较新,社区较小,但它速度快,效率高。 总之,它给你所有的优势在于 Python 的有用性和易用性。 由于其效率和速度,对于基于研究的小型项目来说,这是一个很好的选择。 如前所述,Facebook、Twitter 等公司正在使用 PyTorch 来训练深度学习模型。 但是,使用它尚未成为主流。 PyTorch 的潜力是显而易见的,但它还没有准备好去挑战这个 TensorFlow 野兽。 然而,考虑到它的增长,PyTorch 进一步优化并提供更多功能的日子并不遥远,直到与 TensorFlow可以 比较。

pytorch入门代码

pytorch官网:https://pytorch.org/

读者评分
[评分人数: 0 平均分: 0]

评论